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ABSTRACT

A finite element formulation has been
used to obtain the dispersion relation for a
single dielectric-semiconductor interface
bounded by two perfectly conducting planes.
This system represents a suitable canonical
problem for the design of non-reciprocal
devices such as circulators, isolators, and
phase shifters. The finite element solution
for the dispersive behavior was compared
against the exact solution for the Towest real
branches, and excellent agreement was found
between the two.

INTRODUCTION

In recent years interest in various
waveguiding structures in the millimeter (mm)
and submilliméter (smm) wavelength, i.e.,
100-1000 GHz, has been growing. The develop-
ment of this technology requires a parallel
development of more accurate computational
techniques. The finite element method pro-
vides an attractive approach to the problem of
obtaining the dispersive behavior of the
waveguide. The effectiveness of this method
has led many researchers to apply it to
different electromagnetic field problems, (1).

The single dielectric-semiconductor
interface model considered in this paper is a
suitable canonical problem for the design of
non-reciprocal devices such as circulators,
isolators, and phase shifters. Propagation
characteristics of structures used to obtain
?uch)circuit functions have been analyzed in

2-3).

THE WAVEGUIDING STRUCTURE

Consider the dielectric-semiconductor
single interface sided by two perfectly
conducting planes shown in Fig. 1, with a
superimposed finite element mesh. A high
quality n-type GaAs material has been taken as
the substrate for the semiconductor vregion.
The system is assumed to be exposed to a
uniform d.c. magnetic field along the y-direct-
jon, with time-harmonic wave propagation in
the z-direction. Only TM modes will be con-
sidered in the present analysis since TE modes
do not have significant interaction with the
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semiconducting material.
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Fig. 1 - Dielectric-Semiconductor Single
Interface

We take the permeability u, to be a
constant for both regions. The permittivity
e 1s a scalar constant for the dielectric
medium, but becomes a tensor for the semi-
conducting material. For a biasing mag-
netic field in the y-direction, the di-
electric tensor takes the following form,

(3).

=J
er(w) = i : (1)
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where 2 (miv)
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and w_ is the plasma frequency, v the
col1i%ion frequency, and W, the cyclo-

tron frequency, we =eB _/m*. For the iso-
tropic case, o, = 0 and the tensor elements

reduce to () w2
. (0 -
rEr=ecoi _6%6:35) and n= Q
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From Maxwell's equations, uncoupled P, the width of the dielectric medium, and P
two-dimensional partial differential equat- the width of the semiconducting medium.
ions were derived for e_. These equations

2

have the common form FINITE ELEMENT FORMULATION
226 22e The_finite element mesh for this
z 7 =0 (2) probiem is shown in Figure 1. The fi-

- tM YA M, e, nite element interpolating functions
utilized were those for the eight-
ety g?gednlso?zgameErZﬁ gﬁadgi1?tera1
wligey ment, . Bo e dielectric
where M, g1§2:§2;f§0§% . and semiconducting regions were divid-
ed into three equally-spaced elements.
The finite element equations were gener-

1

) 2 2 ated from equation (2) by means of the
where M, = v2 4+ Q—HQE%IE n’) Galerkin formulation Y
for the semiconducting medium and M,= Bzez azez
1, M, = y2+h?upeoer for the dielectric JJ Gr™ + My 522 + My e INs(x,y )dydx=0
medifim. Moreover the magnetic field A X 1oy 2 &N s(x.y Jdy

component hy is given in terms of e, by (6)

- 3e : where the N.(x,y) are the finite element
h = ('Jf€°5 ) G—;é +40Y &) (3) interpolatifg fﬂnctions, and the index i
Yoo oyTretHeeet x 8 ranges over those nodal points at which
the value of e_ is not specified by the
in the semiconducting medium and boundary condifions. We now introduce
the finite element approximation e. =
[N(x,y)] {e_}, where [N(x,y)] is tfe row

s sy vector of iﬁterpo]ating functions and
= 9?8951 ) (4) {e_} the column vector of nodal point
Y Y T Vocoes ox vatues. An application of the divergence

theorem now yields the finite element

in the dielectric medium. equations in the form

The dielectric-semiconductor inter-
face was taken to be lossless (v=0). As-

; e e
suming there are no y-variations (3/ay=0), r -é .z _Z =
a8 TM mode solution exists in the vicinty) (A] {eZ} B (3X "x * Ml 3y ny)NidS 0
of the interface (components h , e , e ). (7)
The electromagnetic field bounHary condi- L. . . .
tion at the perfectly conducting plane re- The 1,j-th element in the coefficient
quires that nxE=0. The dispersion relation matrix [A] is given by
is obtained from imposing this boundary
condition and requiring continuity of e aN. 3N, sN. 3N.
and h  at the interface. The result is A .= JJ (1t —L+ L J MM ) dxdy
Y i3 Mg Yax ax 13y 3oy 2747
£11y =
(*1'C0th (K;P,) (5) (8)
€K2 . . . .
Jny and is evaluated by 3x3 point Gaussian
(Y2+w2u°gog)C°th (KZPZ) - (Y2+w2u090£) integration. The line integral in equa-
tion (7) is to be evaluated around the
with boundary B of the finite element mesh,
and (n_,n ) are the components of the
K2 - 2 ~K2 ) KZ - KZ (w) unit n8rmd1 vector to B. When assemb-
1 Y 0 €13 By T =vT-Rp e lw ling the finite element equations from
.. . element contributions, as is usuall
Qgggtgnzoﬁgﬁ d1§2tge complex Dfogagatwn done, the integral is to be evaluated
: 0 - W HeBos E o around the boundary B_ of each element.
£2-p2 : The boundary conditions e_ = 0
"TE . Furthermore, o is the attenua- at x = -P,, P, as well as the’condition
tion constant, 8 is the phase constant, de_/3y=0 dn the top and bottom sides of
eo the permittivity of vacuum, u, the B,%can easily be shown to lead to the van-
permeability of vacuum e; the relative ishing of the line integral along these
die]ec%ﬁjc constant of the dielectric med- portions of B. Moreover interelement
ium, e the static dielectric constant of compatability conditions between adjacent
the semiconducting medium, e: the effective di- elements in the same medium Tead to a
electric constant of the semfconducting medium, vanishing net contribution when the Tine
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integral is evaluated over the common in-
terelement boundary. This is not true,
however, along the interface between the
dielectric and semiconducting regions,
where special care must be taken,

Let n be one of the three values of
the index i corresponding to the three
interface nodes. Further denote the
values of e_ in the die1§$tric a?g)semi-
conducting fegions of e and e re
spectively. Along the ?nterfii$zwe(§35t
have both continuity of e, e "'= e )}
and the continuity of hy.z Th lattér
condition, from equations (3) and (4),
gives that

aez(l) aez(z) »
—F— 1 _q =(Ri—=— + R.e ( )) =0
3X x=0 1 3x 2%7 X
=€ (9)
_ Ely*tw’yuoeoen) -
where Rl m and R2

(QEXJ Ry We now write the n-th finite

element equation separately for both the
dielectric and semiconducting regions.
These are, respectively (with summation
convention implied)

1 1) _
Aéj)e (1) - Cdn

zJ
R Cd
2). (2) 2 (2) _
Aéj)ezj B Cﬁi) b ok

. e .
ng o zJ 1 (10)

- a =
where d_ = j_u N, (o,y)dy and bnj

f_g N, (o,y)N, (0,y)dy. Eliminating C

J
between equations (10) and requiring‘con-
tinuity of e_ at the interface now yields
for the n-th“equation

1 2 3
(Aﬁj) " RlAnj( ). RoPpy) €3 0 (11)

Equations (11) represent the finite
element equations corresponding to the
interface nodes. The remaining finite
element equations have the form of equa-
tion (7), with the Tine integral vanish-
ing for these equations. When assembied,
the finite element equations have the form
[A*] {e_} = 0. A nontrivial solution then
require§ that

|Ax] = 0 (12)

which represents the finite element dis-
persion equation for the problem. Given
a value of @, one may obtain correspond-
ing values of v by standard numerical
root-finding techniques.
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RESULTS AND CONCLUSIONS

Equations (5) and (12) represent re-
spectively the exact dispersion relation
and the finite element approximation.
Both equations were solved numerically
using a standard technique, the bisection
method, foroyhe following physical con-
stant;; e ’=13, ¢; =1, w _=10'% rad/sec,
% =102 'vad/sec, P, = 80 1M, P, =100 um.
F?gures 2 shows thé lTowest pos%tive and
negative real branches of the dispersion
spectrum obtained from the exact and
finite element dispersion equations for
|8] < 2, for a normalized propagation
constant defined by 8 = P,8 and a norm-
alized frequency given by w=wPy/c. It
can be seen that the agreement between
the two is excellent. In fact, three-
digit agreement was typically noted in
the numerical results.

7000
-—— EXACT
© FINITE ELEMENT
408
@
0.6
404
0.2
) ) \ . . . R
2.0 -1.0 [o] 1.0 2.0
B

Fig. 2 - Exact and Finite Element
Dispersion Spectra



Figures 3 and 4 show the distribu-
tion of e  at two points each along the
positive 4nd negative branches, one
taken in the linear portion of each curve
and the other in the flattened portion of
the curve. The value of e_ at the inter-
face was normalized to unity. Again ex-
cellent agreement between the results of
the exact solution and the finite element
approximation may be noted.
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To summarize, we have applied the
finite element method to the problem of
obtaining the dispersion characteristics
of a relatively simple, one-dimensional
waveguiding structure. Excellent results
were obtained. The primary advantage of
the finite element method is, of course,
its ability to treat problems of practical
interest involving complicated two -
dimensional geometries and correspond-
ingly complicated electric and magnetic
field distributions. The results given
here indicate that the finite element
method holds great promise for these ap-
plications, and in particular for the
analysis of complex gyroelectrically
and gyromagnetically loaded waveguiding
structures.
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