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FINITE ELEMENTANALYSIS APPLTED TO GYROELECTRICALLYLOADEDWAVEGUIDINGSTRUCTURES

N. Mohsenian, T, J. Delph, and D, M, Belle

Lehigh University

ABSTRACT

A finite element formulation has been
used to obtain the dispersion relation for a

single dielectric-semiconductor interface
bounded by two perfectly conducting planes.
This system represents a suitable canonical
problem for the design of non-reciprocal
devices such as circulators, isolators, and

phase shifters. The finite element solution
for the dispersive behavior was compared
against the exact solution for the lowest real
branches, and excellent agreement was found
between the two.

INTRODUCTION

In recent years interest in various
waveguiding structures in the millimeter (mm)
and submillimeter (smm) wavelength, i.e.,
100-1000 GHz, has been growing. The develop-
ment of this technology requires a parallel
development of more accurate computational
techniques. The finite element method pro-
vides an attractive approach to the problem of
obtaining the dispersive behavior of the
waveguide. The effectiveness of this method
has led many researchers to apply it to
different electromagnetic field problems, (l).

The single dielectric-semiconductor
interface model considered in this paper is a
suitable canonical problem for the design of
non-reciprocal devices such as circulators,
isolators, and phase shifters. Propagation
characteristics of structures used to obtain
such circuit functions have been analyzed in
(2-3).

THE WAVEGUIDINGSTRUCTURE

Consider the dielectric-semiconductor
single interface sided by two perfectly
conducting planes shown in Fig. 1, with a
superimposed finite element mesh. A high
quality n-type GaAs material has been taken as
the substrate for the semiconductor region.
The system is assumed to be exposed to a
uniform d.c. magnetic field along the y-direct-
ion, with time-harmonic wave propagation in
the z-direction. Only TM modes will be con-
sidered in the present analysis since TE modes
do not have significant interaction with the

semiconducting material.

Fig. 1 - Dielectric-Semiconductor Single
Interface

We take the permeability I.10 to be a
constant for both regions. The permittivity
c is a scalar constant for the dielectric
medium, but becomes a tensor for the semi-
conducting material. For a biasing mag-
netic field in the y-direction, the di-
electric tensor takes the following form,
(3).
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UJ is the plasma frequency, v the
colli!?ion frequency, and or the cyclo-
tron frequency, :C =eB /m*: For the iso-
tropic case, Ur - 0 ana the tensor elements
reduce to ‘

E=c=~(0)- ~, and n= o
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From Maxwell’s equations, uncoupled
two-dimensional partial differential equat-
ions were derived for e . These equations
have the common form z

a2e a2e
$+M7~+Me= O1 ay 2Z

(2)

where !42 = ~z + w21Joco(E%12)

c

for the semiconducting medium and M =
i“1, M = y~+i02POCOSl for the dielect lC

medi;m. Moreover the magnetic field
component hy is given in terms of ez by

in the semiconducting medium and

aq
hy = (-jhKOCl

—) —
Y’+IJ’!JOEOE1 ax

(4)

in the dielectric medium.
The dielectric-semiconductor inter-

face was taken to be lossless (v=O). As-
suming there are no y-variations (a/ay=O),
a TM mode solution exists in the vicinty
of the interface (components h , e , e ).
The electromagnetic field boun~aryxcon~i-
tion at the perfectly conducting plane re-
quires that nxE=O. The dispersion relation
is obtained from imposing this boundary
condition and requiring continuity of e
and hy at the interface. The result isz

(~;)Coth (KIP1) =
(5)

<K2
(#+uzDogoc)coth (K2P2) - (Y2+;2;0.0C)

with

K; = ‘Y* -K; cl; K; = -y*-K: Se(IIJ)

Here y =~+jB is2the complex propagation
constant, and K. = U2POSo, Cc(u) =

~2-n*

c. Furthermore, ~ is the attenua-
tion constant, B is the phase constant,
EO the permittivity of vacuum, ~. the
permeability of vacuum El the relative

di;~e:~~jc conita nt of the dielectric med-
the static dielectric constant of

the semiconducting medium, c’ the effective di-
electric constant of the sem~conducting medium,

P the width of the dielectric medium, and P2
tie width of the semiconducting medium.

FINITE ELEMENTFORMULATION

The finite element mesh for this
problem is shown in Figure 1. The fi-
nite element interpolating functions
utilized were those for the eight-
noded isoparametric quadrilateral
element, (4). Both the dielectric
and semiconducting regions were divid-
ed into three equally-spaced elements.
The finite element equations were gener-
ated from equation (2) by means of the
Galerkin formulation

1
a2e

~(3# ‘MI#+f42 ez)Ni(x,y )dydx=O

(6)

where the N.(x,y) are the finite element
interpolating functions, and the index i
ranges over those nodal points at which
the value of e is not specified by the
boundary condi?’ions. We now introduce
the finite element approximation e =
[N(x,y)l{e }, where [N(x,y)] is tfie row
vector of ifiterpolating functions and
{e } the column vector of nodal point
va?ues. An application of the divergence
theorem now yields the finite element
equations in the form

I ae ae
Ml {ez}- ~ (-& nx + M ~ ny)Nids=O1 ay

(7)

The i,j-th element in the coefficient
matrix [A] is given by

(8)

and is evaluated by 3x3 point Gaussian
integration. The line integral in equa-
tion (7) is to be evaluated around the
boundary B of the finite element mesh,
and (n ,n ) are the components of the
unit n~rm{l vector to B. When assemb-
ling the finite element equations from
element contributions, as is usually
done, the integral is_ to be evaluated
around the boundary B of each element.

The boundary con~itions e = O
atx = -P , P , as well as thezcondition
~e /3y=0 An t?e top and bottom sides of
~,zcan easily be shown to lead to the van-
ishing of th~ line integral along these
portions of B. Moreover interelement
comparability conditions between adjacent
elements in the same medium lead to a
vanishing net contribution when the line
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integral is evaluated over the common in-
terelement boundary. This is not true,
however, along the interface between the
dielectric and semiconducting regions,
where special care must be taken.

Let n be one of the three values of
the index i corresponding to the three
interface nodes. Further denote the
values of e in the die~f$t;;; g~~)semi-
conducting ~egions of e

have both co~~~~?~h~?~t!~~~f~~~~~~;t
spectively.

and the continuity of hy.z
condition, from equations (3) and (4),
qives that

~e (1) ~e (2)
z

~=. ‘(R1 ~xz (2)) ~=~
ax + ‘2ez

(+ RI. We now write the n-th finite

element equation separately for both the
dielectric and semiconducting regions.
These are, respectively (with summation
convention implied)

A(~)ez$l)=cd
n

‘2 (2) .+*~~)e (2) - (~) bnj ‘zj
nj ZJ (lo)

where dn =~-~ Nn (o,y)dyandbnj =

~-~Nn (o,y)Nj (o,y)dy. Eliminating

between equations (10) and requiring con-
tinuity of e at the interface now yields
for the n-thzequation

(A::) + RIAnj ‘2) - R2bnj) ezj=O (11)

Equations (11) represent the finite
element equations corresponding to the
interface nodes. The remaining finite
element equations have the form of equa-
tion (7), with the line integral vanish-
ing for these equations. When assembled,
the finite element equations have the form
[A*]{e }=0. A nontrivial solution then
require$ that

RESULTSAND CONCLUSIONS

Equations (5) and (12) represent re-
spectively the exact dispersion relation
and the finite element approximation.
Both equations were solved numerically
using a standard technique, the bisection
method, fo~o~~e following physj$al con-

1~t~~:?~r:d,s~;3’P& ’==~~:~;l~ =~::i~::’

?F~gures 2 shows’th~ lowest pos tive and
negative real branches of the dispersion
spectrum obtained from the exact and
finite element dispersion equations for
161 <2, for a normalized propagation
constant defined by B = P2& and a norma-
lized frequency given by U=mPZ/C. It
can be seen that the agreement between
the two is excellent. In fact, three-
digit agreement was typically noted in
the numerical results.
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Fig. 2 - Exact and Finite Element
Dispersion Spectra

IA*I = O (12)

which represents the finite element dis-
persion equation for the problem. Given
a value of O, one may obtain correspond-
ing values of y by standard numerical
root-finding techniques.
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Figures 3 and 4 show the distribu-
tion of e at two points each along the
positive ~nd negative branches, one
taken in the linear portion of each curve

and the other in the flattened portion of
the curve. The value of e at the inter-
face was normalized to unity. Again ex-
cellent agreement between the results of
the exact solution and the finite element
approximation may be noted.
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To summarize, we have applied the
finite element method to the problem of
obtaining the dispersion characteristics
of a relatively simple, one-dimensional
waveguiding structure. Excellent results
were obtained. The primary advantage of
the finite element method is, of course,
its ability to treat problems of practical
interest involving complicated two -
dimensional geometries and correspond-
ingly complicated electric and magnetic
field distributions. The results given
here indicate that the finite element
method holds great promise for these ap-
plications, and in particular for the
analysis of complex gyroelectrically
and gyromagnetically loaded waveguiding
structures.
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